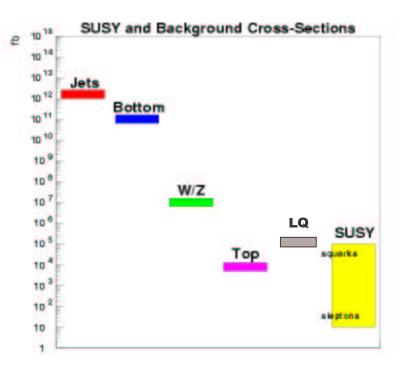
Search for Higgs, Leptoquarks, and Exotics at <u>Tevatron</u>

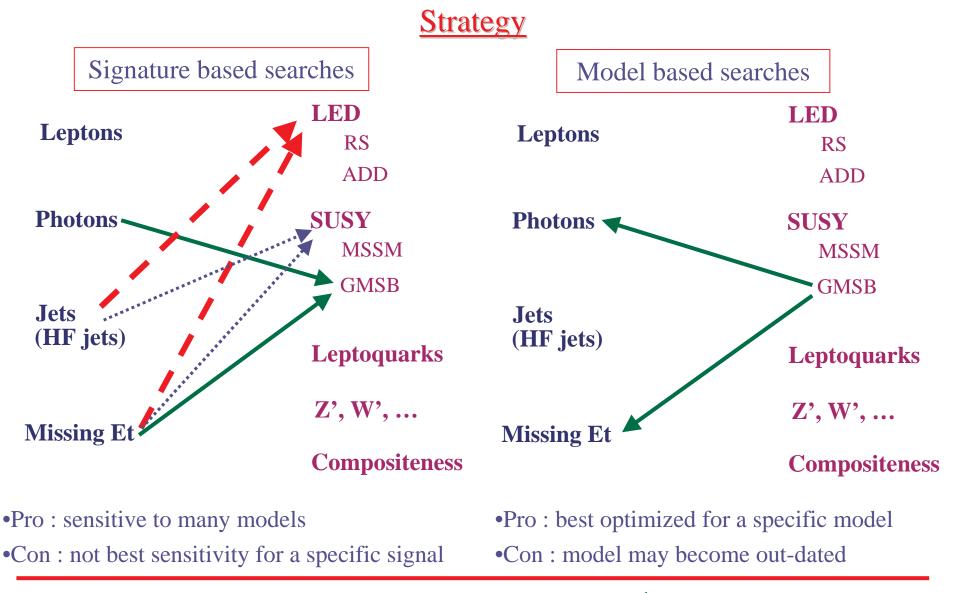
Electroweak Interactions and Unified Theories

XXXIXth Rencontres de Moriond

21st-28th March 2004

Song Ming Wang


On behalf of the CDF and DØ Collaborations

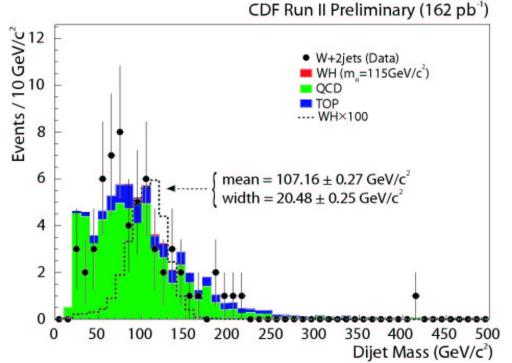

Outline:

- Introduction
- •Report results on Run 2 searches from CDF and DØ
 - •Higgs
 - •GMSB
 - •Leptoquarks
 - •Excited Electron
- •Summary

Search for Physics Beyond Standard Model

- •SM theory has been remarkably confirmed by experiments over past 30 years
- •However there are hints indicate new physics beyond SM
- •Signs of these new physics are predicted to be very rare (otherwise we would have seen it)
- •Inputs from theorists help us to know **WHAT** to look for
- •Challenge for the experimentalists : **HOW**!
 - •Production rates, luminosity,...
 - Detection efficiency
 - Suppress background
 - •Differentiate signal and background

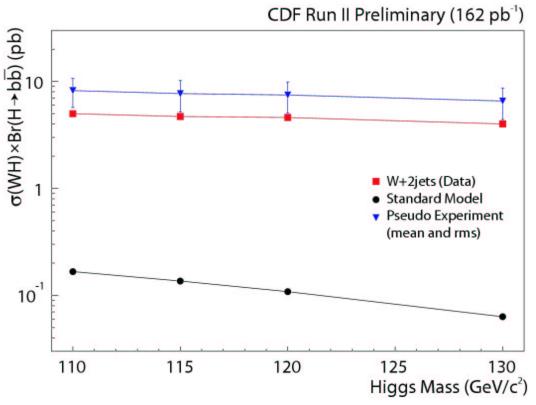
- •Report results on searches with Run 2 data (L~200 pb⁻¹)
- •Employ both search strategies


Searches for Higgs


Search for Standard Model Higgs

•CDF look for Higgs in the associated production:

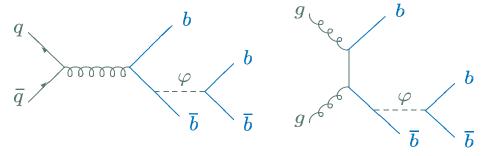
•
$$p\overline{p} \rightarrow WH \rightarrow lvb\overline{b}$$

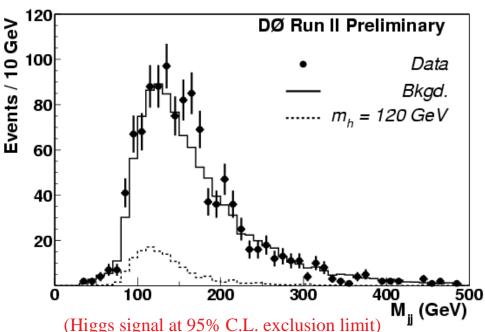

- •Selection:
 - High pt lepton data (L=162 pb-1)
 - One high pt central e or μ , large MET (MET>20 GeV)
 - 2 jets (at least one is tagged as b-jet)
 - Veto events w/ >1 lepton (suppress ttbar)

•Backgrounds:

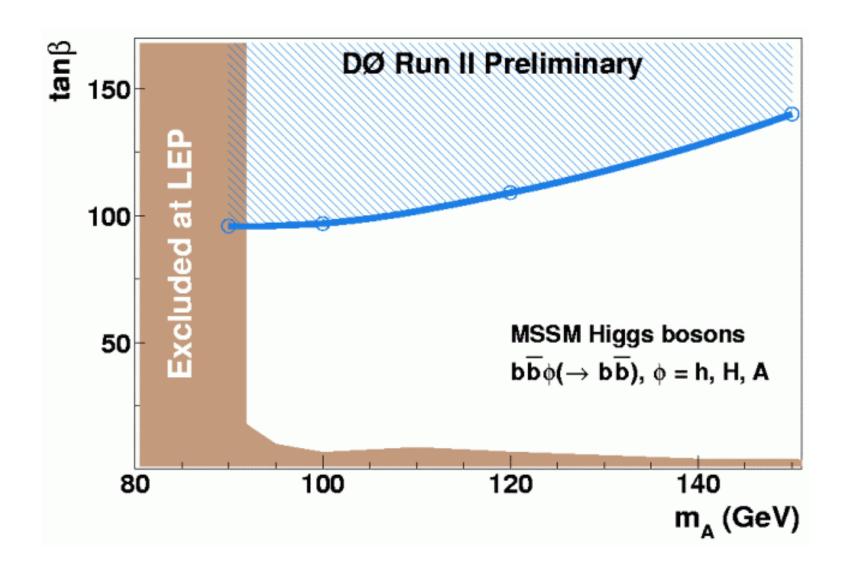
$$\begin{array}{c} & \\ \bullet \text{Mistags} \\ \bullet \text{Wbb, Wcc, Wc} \\ \bullet \text{QCD} \\ & \\ \text{TOP} \end{array} \\ \begin{array}{c} \bullet \text{ tt, single t, di-boson,} \\ Z(\rightarrow \tau \tau) \end{array}$$

- •Improved limit over Run1, but sensitivity of current search is limited by statistics
- Future improvement :
 - Include forward electron
 - •Improvement jet energy resolution
 - •Improve b-tagging
 - •Combine with other channels $(ZH \rightarrow vvb\overline{b})$

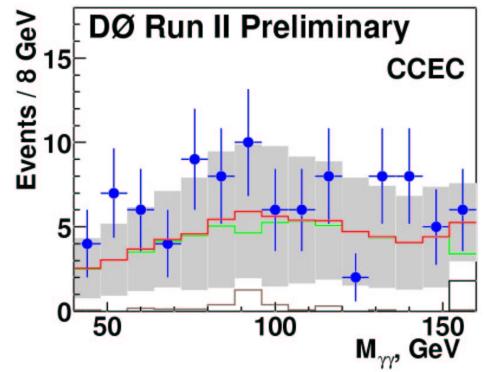

Neutral Higgs Bosons at High Tanß in Muti-jets Events


DØ search for non-SM neutral Higgs:

Event Selection:


- Multi-jet data sample (L=131pb⁻¹)
- At least 3 jets (Et cuts on jets are optimized separately for different Higgs mass points, and for min. # jets required in the event)
- •≥ 3 b-tagged jets
- •Look for signal in the invariant mass spectrum from the two leading b-tagged jets
- Backgrounds :
 - •QCD multi-jets (light-jets : u,d,s,c heavy-jets : b)
 - Others (tt, $Z(\rightarrow bb)$ +jets,..)

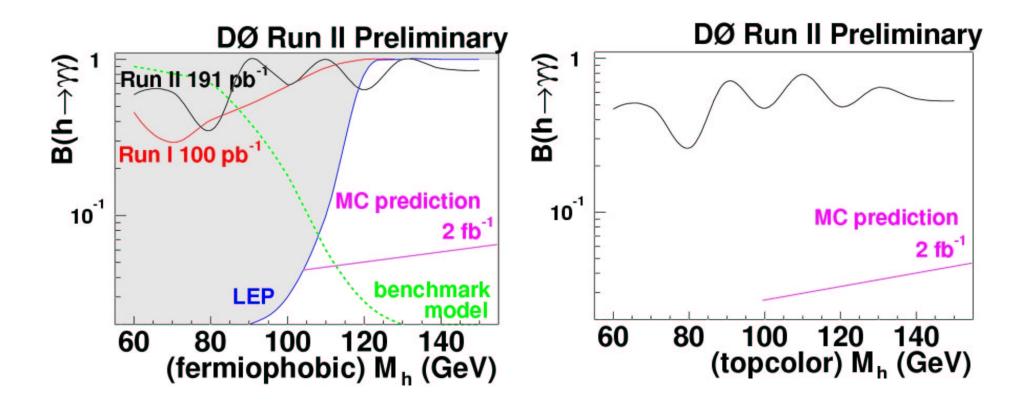
$$gg, qq \rightarrow \phi + b\bar{b} \rightarrow b\bar{b}b\bar{b}$$
 (ϕ =h,H,A)
BR($\phi \rightarrow b\bar{b}$) ~ 90%



Neutral Higgs Bosons at High Tanß in Muti-jets Events

Search for Non-SM Light Higgs in $H \rightarrow \gamma \gamma$

- •Some extensions of SM contain Higgs w/ large $B(H\rightarrow\gamma\gamma)$
 - •Ferimophobic Higgs : does not couple to fermions
 - •Topcolor Higgs : couple to top (only non-zero fermion coupling)
 - •At low Higgs mass, $B(H \rightarrow \gamma \gamma)$ dominates

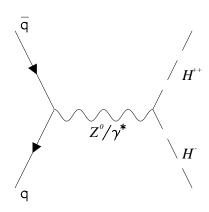

- •DØ used 191 pb⁻¹ Run2 data to search for Higgs in these two scenarios
 - •2 EM objects (pass γ -ID), Et > 25 GeV in CC (central calor) or in EC (end calor)
 - $Pt(\gamma\gamma) > 35 \text{ GeV}$

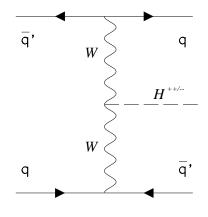
data = 97.0
bkgd = 68.8 +- 45.8
QCD = 64.0 +- 45.7
DY = 3.0 +- 3.0

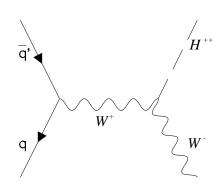
$$\gamma\gamma$$
 = 1.8 +- 0.1

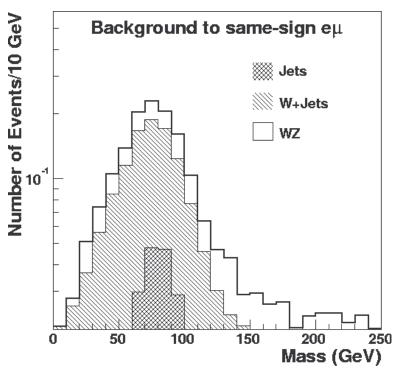
•Dominant uncertainty in background estimation is in the measurement of γ mis-ID rate (~30%)

- •No clear evidence of excess
- •Perform counting experiments on optimized sliding mass window to set limit on $B(H \rightarrow \gamma \gamma)$ as function of M(H)

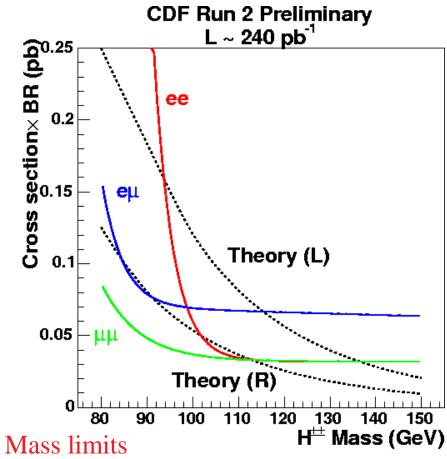



Search for H++


- •H++/-- predicted in models that contain Higgs triplets
 - •Left-Right (LR) symmetric models
 - •SUSY LR models : low mass (~100 GeV 1 TeV)


Event Selection:

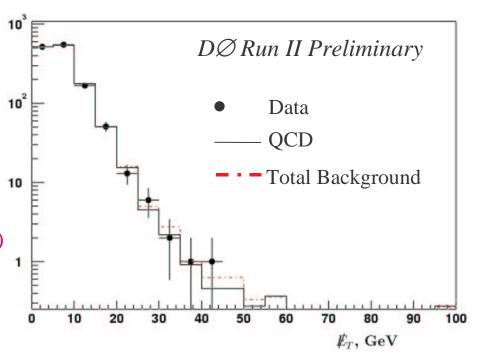
- CDF Select H^{++/--} pair or singly produced
- •Search for 1 pair of same sign ee, or $\mu\mu$, or $e\mu$ in mass window of $\pm 10\% *M(H++)$ (~3 σ detector resolution)
 - same sign leptons decay contains low SM backgrounds, provide clean environment for new physics search
- Datasets: inclusive high Pt electron/muon samples (~240 pb⁻¹ for both)



•Background prediction for M(l+l+) >80 GeV (>100 GeV for ee)

Decay Channels	# predicted Evts
ee	$1.8^{+0.8}_{-0.6}$
μμ	$0.8^{+0.6}_{-0.5}$
eμ	$0.9^{+0.4}_{-0.4}$

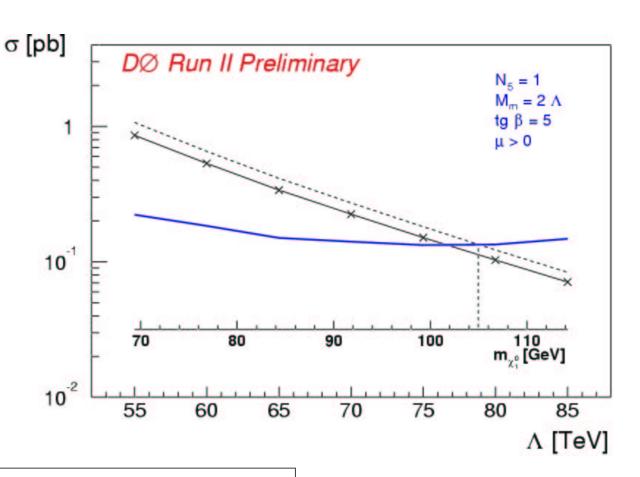
•Data : observe 0 event


• Predicted backgrounds in same-sign $e\mu$ decay **CDF Run 2 Prelimina**

	CDF		DØ		
	$H_L^{\scriptscriptstyle ++}$	H_R^{++}	$H_L^{\scriptscriptstyle ++}$	$H_{\scriptscriptstyle R}^{\scriptscriptstyle ++}$	
ee	135	~102-113			
μμ	135	113	116	95	
eμ	115				

Search for GMSB SUSY in yy+MET

- •In GMSB model, gravitino \widetilde{G} is the LSP, and NLSP is either $\widetilde{\mathcal{X}}_1^0$ or slepton
- •In the case $\widetilde{\chi}_1^0$ is the NLSP $=>\widetilde{\chi}_1^0 \to \widetilde{G}\gamma$
- •If RP is not violated => have $\gamma\gamma$ + MET in the final state
- •DØ performed search with L=185 pb⁻¹ data
- •SM contributions to $\gamma\gamma$ +MET :
 - •MET due to mis-measurement:
 - •QCD w/ direct γ , or jets mis-ID as γ
 - •DY w/ both e mis-ID as γ
 - •True MET:
 - $W\gamma \rightarrow e v\gamma$ (lost track)
 - $Wj \rightarrow eVj$ (lost track, jet fake as γ)
 - $Z \rightarrow \tau \tau \rightarrow ee + X$ (lost track)
 - *tt*,*WW*,*WZ*


- •Optimized cut value : MET > 40 GeV
- •Nexpect = 2.5 ± 0.5

$$\bullet$$
Nobs = 1

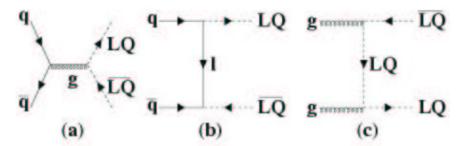
•Set 95% C.L. limit:

- $\Lambda > 78.8 \text{ TeV}$
- M($\tilde{\chi}_1^0$) > 105 GeV
- M($\widetilde{\chi}_1^+$) > 180 GeV

$$N5 = 1$$
 $M_m = 2\Lambda$
 $tan(\beta) = 5$
 $\mu > 0$

Most stringent limits in the class of model considered in this analysis to date!

Searches for Leptoquarks


Leptoquarks

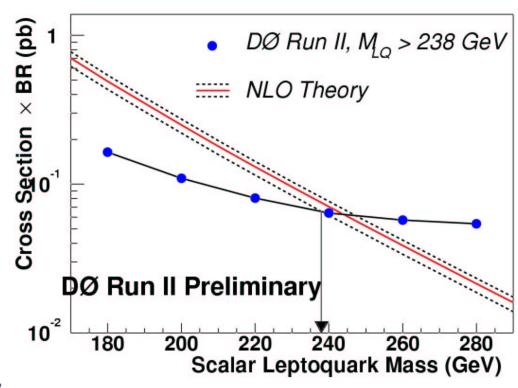
- •In SM, symmetry between leptons and quarks
 - Representation of fermion fields under SM gauge groups
 - Replication over 3 family generation
- •Could indicate new symmetry between lepton and quarks => new particles
- Leptoquark
 - Appears in several extension of SM: GUTS, Technicolor, Compositeness, SUSY (RPV)
 - Scalar or vector, color triplet bosons
 - Carry L and B, fractional EM charge
 - Assume LQ couples to lepton and quark of same generation to avoid FCNC constraint => 3 generation LQ

•LQ decays:

•
$$LQ \rightarrow lq$$
 $(l = e, \mu, \tau)$ $\beta = 1$ B:branching ratio to charged lepton

- •LQ production at Tevatron:
 - Predominantly pair produced through gluon splitting
 - $\sigma(M=200 \text{ GeV}) \sim 0.3 \text{ pb}$

1st Generation Leptoquarks (Scalar)

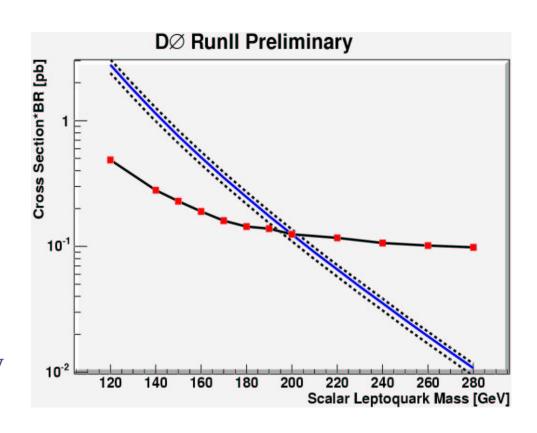

•DØ searched for 1st gen LQ with L=175 pb-1

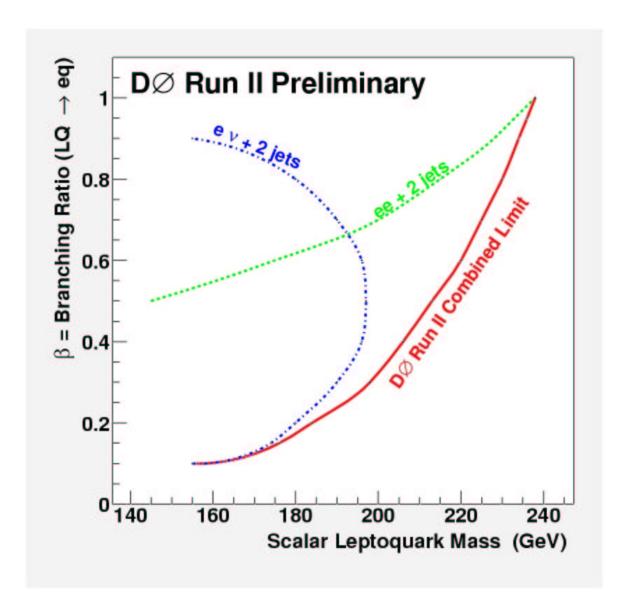
•
$$LQLQ \rightarrow eeqq$$

•
$$LQLQ \rightarrow evqq$$

• eejj

- 2 EM clusters, Et > 25 GeV (at least 1 EM cluster w/ track matched)
- \geq 2 jets, Et>20 GeV, $|\eta|$ <2.4
- Z veto ($80 < M_{ee} < 102 \text{ GeV}$)
- Scalar sum $\Sigma Et(eejj) > 450 \text{ GeV}$
 - At high LQ mass, *e*,j more energetic than SM background
- Nexpect = 0.4 ± 0.1 (DY/Z, QCD fakes, top)
- Nobs = 0
- Signal acceptance ~ 10% 30%

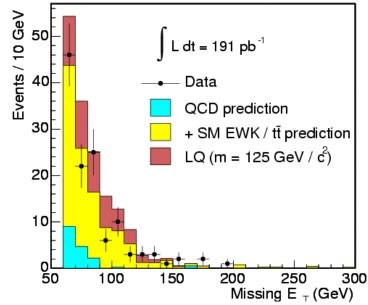


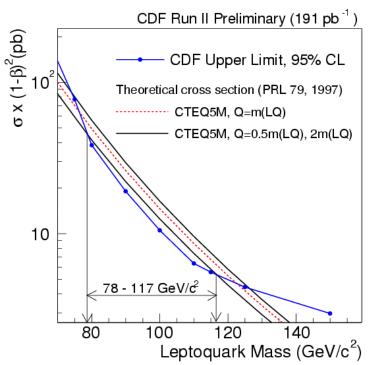

•Exclude at 95% C.L. M_{LO} <238 GeV

1st Generation Leptoquarks (Scalar)

evjj

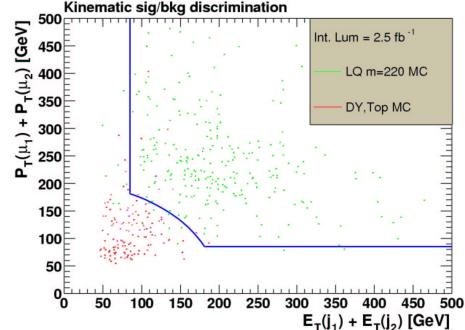
- •1 EM cluster, Et>35 GeV, track match
 - •EM cluster is isolated
- •2 jets, Et>25 GeV, $|\eta|$ <2.5
- •MET > 30 GeV
- $\Delta \phi(EM,MET) > 0.7$
 - e and v well separated, from different LQ
- • $M_T(ev)>130 \text{ GeV (veto W+jets)}$
- •Scalar sum ΣEt(e,MET,jj)>330 GeV
- •Nexpect=4.7±0.9 (QCD,W,ttbar)
- \bullet Nobs=2
- •Exclude at 95% C.L. M_{LQ} <194 GeV

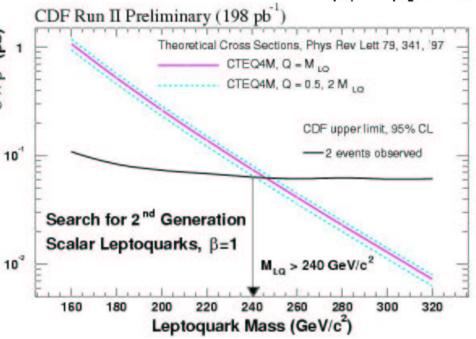




95% CL lower limit on β as function of mass of 1st gen. LQ

1st Generation Leptoquarks (Scalar) CDF Run II Preliminary


- •CDF searched for $LQLQ \rightarrow vvqq$ w/ L=191pb⁻¹
- •Selections:
 - •2,3 jets (1st,2nd leading jets in central region)
 - Large MET (MET>60 GeV)
 - Jets and MET directions not aligned (reject QCD, MET due to energy mismeasurement)
 - Veto events w/ e,μ candidates, and require central jets w/ ≥4 tracks (veto τ hadron)
- •Signal acceptance ~1%-8%
- •Nexpect=118±14 (W/Z+jets, QCD)
- •Nobs=124
- •Exclude at 95% C.L. 78<M_{LQ}<117 GeV



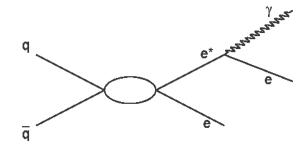
2nd Generation Leptoquarks (Scalar)

- $LQLQ \rightarrow \mu\mu qq$ searched by CDF using data w/ L=198 pb⁻¹
- Selections:
 - 2 high Pt muon candidates (Pt>25 GeV)
 - •2 jets (Et>15,30 GeV)
 - Veto events:
 - $\bullet M_{\mu\mu}$ <15 GeV $(J/\psi,Y)$
 - •76<M_{µµ}<110 GeV (Z)
 - Σ Et(jet1,jet2)>85 GeV, Σ Pt(μ 1, μ 2)>85 GeV
 - $\sqrt{(\Sigma \text{jetEt})^2 + (\Sigma \mu \text{Pt})^2} > 200 \text{ GeV}$
- •Nexpect = 3.2 ± 1.2 (DY+jets, QCD, ttbar)
- Nobs = 2
- •Exclude at 95% C.L. M_{LQ} <240 GeV

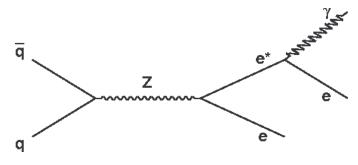
Rencontres de Morio

Summary on Leptoquark Search at Tevatron Run 2

Scalar LQ		CDF		DØ	
Generation	β	M _{LQ} (GeV)		M _{LQ} (GeV)	
		Run 1	Run 2	Run 1	Run 2
1 st	1	213	Update in progress	225	238
	0.5	182	166	204	194
	0		78-117	98	
2 nd	1	202	241	200	186
	0.5	160		180	
	0		78-117	98	


Run 1 3rd generation results are not shown here

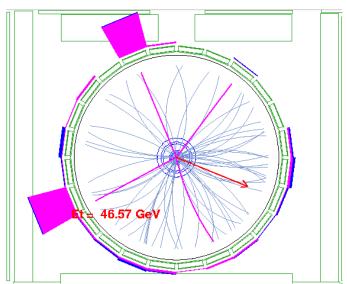
Search for Excited Electron

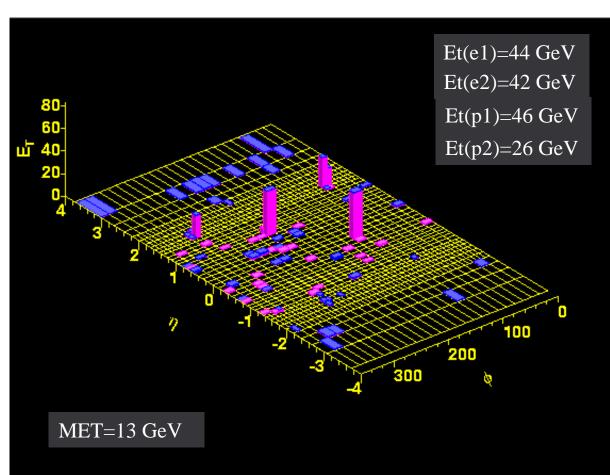

- •Large number of q and l in SM may suggest they are composite particles, consist of more fundamental entities
- •Observation of excited states of q and l => clear sign that q,l are not elementary particles
- •CDF searched for excited electron (e^*)using high pt electron data (L=200 pb⁻¹)
- •At Tevatron, e^* can be produced via contact interactions or gauge mediated interactions

Event Selection:

- •Select events w/ eey in the final state
- •Look for resonance in $M(e\gamma)$
- •SM backgrounds:
 - •Zγ + DY , Z+jets, WZ, Multi-jets, γγ+jets, ...

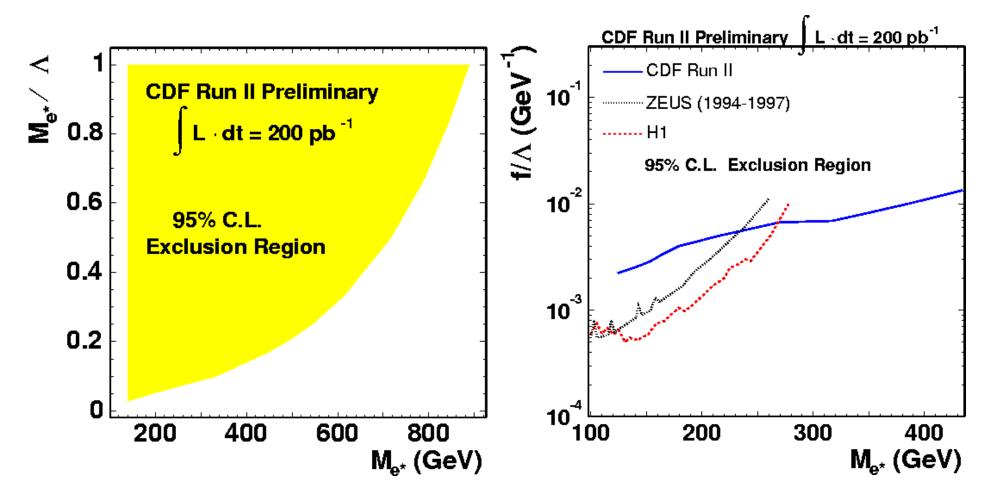
Contact Interaction




Gauge Mediated Interaction

•Expect 3 events, observe 3 events

Search for Excited Electron


- •4 EM candidates
 - •Could be ZZ event!

Contact Interaction Limit

Gauge Mediated Interaction Limit

- Λ : compositeness scale
- f : relative coupling strength to SU(2)_L gauge boson

Summary

- •Tevatron Run 2 is really underway
- •Both experiments have analyzed up to ~200 pb⁻¹ (2X Run 1)
- •Seen some of the new results, and they are as Competitive or Better than Run 1
- •Hear more exciting results in Jim Linnemann's talk